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Abstract

The need to determine occupational exposure to bioaerosols has notably increased in the past 

decade, especially for microbiology-related workplaces and laboratories. Recently, two new 

cyclone-based personal bioaerosol samplers were developed by the National Institute for 

Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and 

Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure 

in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the 

physical sampling performance of these two samplers in moving air conditions, which could 

provide information for personal biological monitoring in a moving air environment. The 

experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 

2.0 m s−1) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. 

Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The 

evaluation of the physical sampling performance was focused on the aspiration efficiency and 

capture efficiency of the two samplers. The test results showed that the orientation-averaged 

aspiration efficiencies of the two samplers closely agreed with the American Conference of 

Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used 

in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found 

negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data 

offer important information on the insight into the physical sampling characteristics of the two test 

samplers.

Introduction

A wide range of local respiratory system complications (such as asthma, bronchitis, and 

mucous membrane irritation) may occur as a result of bioaerosol exposure in the 

workplace.1 Thus, it is important to employ suitable methods for monitoring occupational 
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exposure to bioaerosols in workplaces to ensure a sanitary occupational environment for 

workers.2 Compared to the common airborne particles in working environments, bioaerosols 

(airborne microorganisms) are unique due to their viable characteristics. Therefore, special 

sampling approaches are needed for sampling these airborne microorganisms to maintain 

their viability. In addition, the collection medium of an ideal bioaerosol sampler should be 

able to easily facilitate the subsequent post-sampling microbial analyses.

Many personal samplers have been employed for bioaerosol sampling over the years. 

However, most early personal bioaerosol samplers were either directly applied or slightly 

modified versions of the existing personal samplers used for inert aerosols.3–5 These earlier 

personal bioaerosol samplers were found to be inefficient in collecting viable bioaerosols 

because traditional approaches for sampling inert aerosols often rely on filter samplers, 

impingers, or impactors, which can negatively impact microbial viability during the 

sampling process.6 Due to these limitations, it is necessary to develop new personal 

bioaerosol samplers that use unconventional methods to collect bioaerosols while 

maintaining an acceptable microbial survivability to accurately assess personal bioaerosol 

exposure in the workplace. For this reason, new bioaerosol samplers such as BioSampler®,7 

NIOSH one-stage Bioaerosol Cyclone,8 CIP 10-M,9 NIOSH two-stage cyclone,10 

Coriolis®,11 WWC,12 and PAS-5 by RCT & HRB were developed.13 These personal 

bioaerosol samplers all use swirling air and centrifugal force to capture bioaerosols into a 

liquid (aerosol-to-hydrosol),14 and have been proven to provide reliable sampling data in 

certain controlled sampling environments.

Environmental impact

Performing personal bioaerosol monitoring is essential for assessing workers’ exposure 

to airborne microorganisms such as bacteria, viruses, and fungal spores in associated 

working environments. Having a high-efficiency personal bioaerosol sampler is critical 

to accurately collect the bioaerosols in the environment. Recently, two cyclone-based 

personal bioaerosol samplers were designed for providing representative workplace 

personal bioaerosol sampling. This study evaluated the performance of these two newly 

developed samplers in a moving air environment in terms of their physical sampling 

efficiencies. The test results obtained from this study can offer insight into the 

efficiencies of general cyclone-based personal bioaerosol samplers, and can be utilized as 

a reference for improving other personal aerosol samplers to provide more reliable 

sampling data.

Among these bioaerosol samplers indicated above, the NIOSH one-stage Bioaerosol 

Cyclone (BC) and the RCT & HRB personal aerosol samplers (PAS-5) have many features 

in common in terms of the sampling method, sampler body dimension, the materials the 

samplers are made of, and most importantly, both samplers were designed for personal bio-

aerosol sampling. To date, these two samplers have been evaluated for the physical and 

biological sampling performance in a calm air environment, but have not been tested in 

moving air environments.8,13 It is well known that a full performance evaluation for a newly 

developed personal bioaerosol sampler should involve a biological sampling evaluation in a 

moving air environment for assessing the performance of the sampler in environments 
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similar to realistic working environments. For this reason, these two samplers were selected 

by our laboratory for a biological sampling evaluation in a wind tunnel. Prior to the 

evaluation tests, data regarding the physical sampling performance of these two test 

samplers in the same moving air environment need to be acquired as indispensable baseline 

information. Therefore, the purpose of this study is to conduct a series of wind tunnel 

experiments to evaluate the physical sampling performance of these two samplers in moving 

air conditions. The performance evaluation was focused on obtaining the aspiration 

efficiency and capture efficiency of these two personal bioaerosol samplers, as well as the 

effects of sampling orientations, wind speeds, and test aerosol sizes on these efficiencies. 

The aspiration efficiency is defined as the efficiency at which the aerosols in ambient air are 

transported into the sampler body. The capture efficiency in this study is defined as the 

efficiency at which the aerosols are aspired into the sampler and collected onto the 

collection medium. Examining the aspiration efficiency for a newly developed aerosol 

sampler is important because it shows the ability of the sampler in collecting representative 

data from the sampling environment. In this evaluation test, the aspiration efficiencies of 

these two samplers obtained were compared with the convention curve of IPM defined by 

the American Conference of Governmental Industrial Hygienists (ACGIH).15 In addition, 

determining the capture efficiency for a newly developed personal bioaerosol sampler is also 

essential, since the capture efficiency indicates the fraction of the sampled bioaerosols that is 

useful for subsequent microbial analysis.

Methods

Test samplers

The two test samplers in this evaluation were designed using the principle of a cyclone. As 

previously mentioned, both samplers have been evaluated in a mixing chamber, but have not 

been studied in a wind tunnel. Fig. 1 shows the schematic diagram of the test personal 

bioaerosol samplers. The BC personal bioaerosol sampler (Fig. 1a) was developed by the 

Health Effects Laboratory Division of NIOSH, Morgantown, WV.8 The BC sampler is 6.4 

cm in height by 1.3 cm in width, and has a 0.24 cm sampling inlet diameter. It uses a 1.5 ml 

microcentrifuge tube to generate the cyclone and can be operated at 2 to 4 l min−1. The 

microcentrifuge tube acts as the collection receptacle which allows collected bioaerosol 

samples to be directly analyzed by molecular assays such as PCR (polymerase chain 

reactions) and ELISA (enzyme-linked immunosorbent assays) without transferring the 

sample. Other design advantages of the BC sampler are that it is small, inexpensive, and 

easily fabricated.

The schematic diagram of PAS-5 is shown in Fig. 1b. Research on designing and 

manufacturing this sampler was done at the Research Centre for Toxicology and Hygienic 

Regulation of Biopreparations (RCT & HRB) in Serpukhov, Russia. This personal 

bioaerosol sampler incorporates a recirculating liquid film on the inside wall of the cyclone 

installed and was originally invented by Olenin.16 The PAS-5 sampler is an improved 

version of its predecessor.13,17 As shown in Fig. 1b, the PAS-5 sampler has a column-like 

body that is 9.6 cm in height by 3.8 cm in width. The major difference between the PAS-5 

sampler and its predecessors is that the conical cyclone in the PAS-5 sampler is oriented 
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vertically instead of horizontally. The PAS-5 sampler has a 0.75 cm diameter inlet (inwardly 

narrowing to 0.15 cm) and can be operated for about 200 min with 13 ml of distilled water 

in its 20 ml capacity liquid cartridge at a sampling flow rate of 10 l min−1.

The rationale for using the centrifugal force generated by a cyclone-based sampler to collect 

bioaerosols is as follows: when the sampling air passes the sampler inlet, it is guided to the 

cyclone installed inside the sampler and enters the cyclone tangentially. In this way, an air 

vortex is created inside the cyclone. Depending on their inertia, bioaerosols entering the 

sampler with the sampling air may contact the wall of the cyclone due to the centrifugal 

force generated by the vortex. For the BC sampler, the bioaerosols touching the wall of the 

cyclone (microcentrifuge tube) will remain on the wall (the BC sampler can be operated 

with or without the liquid added to the microcentrifuge tube; therefore, if the liquid is added 

to the tube, some bioaerosols will also be collected in the liquid added at the bottom of the 

tube), and the whole microcentrifuge tube containing the bioaerosols can then be used by 

bioanalytical instruments for microbiological analysis. In the PAS-5 sampler, the 

bioaerosols following the air flow toward the cyclone wall will be captured by the 

recirculating liquid film on the wall, and then be transported to the liquid cartridge at the 

bottom of the sampler. The bioaerosols contained in the collection liquid in the cartridge can 

then be used for post-sampling analyses, such as the standard culture and colony 

enumeration method.

Small wind tunnel

A small wind tunnel facility was chosen for conducting the performance evaluation tests 

based on the fact that it can generate a well-defined moving air profile, and economize the 

amount of the inert aerosols used in the current study and the bioaerosols in the future study. 

The scientific basis for using a small wind tunnel to evaluate the performance of personal 

samplers has been well established and widely applied in many health-related personal 

aerosol sampler studies.18–20 Fig. 2 shows the schematic diagram of the small wind tunnel 

used in this evaluation. The wind tunnel is constructed of stainless steel for easy cleaning 

and interior corrosion prevention. The total length of the wind tunnel is 12.5 m, and the air-

flow arrangement for the wind tunnel is an open-loop design. There are several functional 

sections in this wind tunnel and each section is supported by a steel frame. When operating 

the wind tunnel, room air is drawn into the tunnel by a 45-horse power, variable-speed 

blower. The blower is monitored and stabilized by a digital frequency controller. The 

incoming air first passes through a 1.4 × 1.4 m2 high efficiency particulate air (HEPA) filter 

bank in the inlet. Following the filter module at the entrance, there is an aerosol generation 

chamber. This is where the aerosolized test particles are added to the air stream. The 

aerosols and air are then mixed by a Stairmand disk and three flow-conditioning chambers. 

Each flow-conditioning chamber is 1.2 m long and 0.6 × 0.6 m2 in cross-sectional area. 

These flow-conditioning chambers function to reduce turbulence, straighten the flow, and 

mix the test aerosols and air uniformly before they enter the test chamber of the wind tunnel. 

The test chamber of the wind tunnel is 1.4 m long and has a 0.76 × 0.76 m2 cross-sectional 

area equipped with a clear polycarbonate window that allows the investigator to observe test 

processes. At the entrance of the test chamber, there is a 0.3 m long, bell-shaped inlet that 

enhances the uniformity of the air velocity in the test chamber. At the test chamber outlet, 
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there is another series of HEPA filter banks installed to ensure that the air released back into 

the room is free of particles.

Test aerosols

Fluorescent polystyrene latex (PSL) particles (Thermo Fisher Scientific Inc., Waltham, MA) 

were used in this evaluation as the test aerosols for acquiring the aspiration efficiencies of 

the two test personal samplers. The sizes of the test aerosols were 0.5, 2, 5, and 10 μm 

diameter, which cover the size range of most bacteria and general fungal spores. Bacteria 

and fungal spores are known to be the two most common bioaerosols in the environment.21 

The test aerosols were generated by four medication nebulizers (Up-Mist, Hospitak Inc., 

Farmingdale, NY). These nebulizers were connected to a manifold located on the top of the 

aerosol generation chamber (Fig. 3). Diluted air was used to accelerate liquid droplet 

evaporation and also to help transport the aerosols to the center of the wind tunnel. The 

monodispersed aerosols were passed through a Kr85 neutralizer before being introduced into 

the main air stream in the wind tunnel.

Experimental setup and procedure

The wind tunnel experiments were conducted at three wind speeds (0.5, 1.0, and 2.0 m s−1) 

to simulate wind velocities that workers might encounter in various workplaces.22 Three 

sampling orientations with respect to the wind direction were used to represent the 

conditions of a personal sampler in typical occupational environments.23 The three 

orientations were with the sampler facing directly into the wind (0°), perpendicular to the 

wind (90°), and directly opposed to the wind (180°). The personal samplers were installed 

on a polystyrene board supported by a laboratory stand in the test chamber to simulate 

personal samplers worn on a worker’s body.20,24 For each test run, two identical samplers 

were placed on both sides of the polystyrene board. The flow rate used for operating the BC 

sampler was 2 l min−1, and 0.3 ml deionized water was added to the microcentrifuge tube. 

The flow rate used for the PAS-5 sampler was 10 l min−1 with 8 ml deionized water in its 

liquid cartridge. The outlets of both samplers were connected to individual 25 mm filter 

holders with a cellulose filter (TE-1441-025, TISCH Environmental Inc., Cleves, OH) for 

collecting aerosols passing through the entire sampler. One conical-shaped, sharp-edged 

isokinetic probe was placed in the test chamber close to the opening of the bell-shaped air 

inlet for obtaining representative aerosol concentration in the test chamber. The isokinetic 

probe used a 47 mm polycarbonate membrane filter (Isopore™, Millipore Corp., Billerica, 

MA) for collecting the test aerosols, and the sampling flow rate was adjusted to have the 

sampler inlet velocity matching the wind velocity in the test chamber. Fig. 4 shows the 

experimental setup of the test personal samplers with the isokinetic probe in the test 

chamber. The sampling time for each test run was 20 min. Under this short sampling time, 

the effect of the particle mass loading on the cyclone penetration efficiency could be 

neglected.25 In this evaluation test, all experimental conditions were repeated a minimum of 

three times.

After each test run, the inner walls of the test samplers were flushed with isopropyl alcohol 

to recover the deposited test aerosols. Then, the flushing solutions, the distilled water 

remaining in the microcentrifuge tube of the BC sampler and the liquid cartridge of the 
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PAS-5 sampler, together with the filters from the test samplers and the isokinetic probe, 

were placed in individual vials. Solutions of equal parts by volume of distilled water, 

isopropyl alcohol, and ethyl acetate were then prepared for each vial (the ethyl acetate was 

used to extract the fluorescent aerosol tracer). All relevant solutions from each test run were 

measured by a fluorometer (Model 450, Turner Corp., Mountain View, CA) to acquire the 

fluorescent intensity. In this way, the aerosol concentrations in each solution could be 

obtained, and the aspiration efficiency of the personal bioaerosol sampler in a specific 

sampling condition could then be calculated by 

(1)

where θ is the sampling orientation (the angle between the centerline of the sampler inlet 

and the wind direction); CS-liquid, CS-filter, and CS-wall are the aerosol concentrations of the 

collection liquid, the backup filter, and the inner wall flushing acquired from the test 

sampler; and CI-filter and CI-wall are the aerosol concentrations obtained from the filter and 

the inner wall flushing of the isokinetic probe. Once the aspiration efficiencies for all three 

sampling orientations were obtained, the orientation-averaged aspiration efficiency (A) was 

then calculated by 

(2)

where A0, A90, and A180 are the aspiration efficiencies of the test samplers at 0°, 90°, and 

180° to the wind, respectively. Similar to eqn (1), the capture efficiency of the test samplers 

in a specific sampling orientation (Cpθ) can be expressed as 

(3)

where CS-medium is the aerosol concentration acquired by the collection medium used in the 

sampler. For the BC sampler, CS-medium = CS-liquid + CS-wall, because the test aerosols 

collected from both the water in, and the wall of, the microcentrifuge tube can be used for 

further analysis. However, for the PAS-5 sampler, CS-medium = CS-liquid because the 

recirculating liquid is the only collection medium. The orientation-averaged capture 

efficiency (Cp) for the personal bioaerosol samplers was calculated as

(4)

Results

Fig. 5 shows the orientation-averaged aspiration efficiencies (A) of the two test samplers as a 

function of the aerodynamic diameter (dae) of the test aerosols. The aspiration efficiencies 

are shown at wind speeds of 0.5, 1.0, and 2.0 m s−1 (Fig. 5a–c, respectively). Also shown in 

Fig. 5 are the data from a reference sampler, IOM (SKC Inc., Eighty Four, PA), obtained in 
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separate experiments using the same wind tunnel, test aerosols, filters, wall washing 

solution, and post-experimental procedure. The solid line shown in Fig. 5 is the aspiration 

efficiency curve recommended by ACGIH for the IPM fraction of the personal sampler15

(5)

The reason for comparing the aspiration efficiencies of the two test samplers with the 

ACGIH inhalable convention is that it is believed to be appropriate to apply the health-

related, particle size-selective inhalability criterion for inert aerosol sampling to bioaerosol 

sampling because certain bioaerosols are considered hazardous when inhaled into the 

respiratory tract no matter where they are deposited.

The plots in Fig. 6 show the aspiration efficiencies against the aerodynamic diameter of the 

test aerosols in various sampling orientations for the two test samplers and the reference 

sampler. The data are also shown at different wind speeds from 0.5 to 2.0 m s. −1 Fig. 7 

shows the orientation-averaged capture efficiencies for the two samplers as a function of the 

aerodynamic diameter of the test aerosols at different wind speeds. For the BC sampler, the 

capture efficiencies are presented as the sum of the fractions of the liquid collection and wall 

deposition. For the PAS-5 sampler, the capture efficiencies are shown as the fraction of the 

aerosols collected by the liquid.

Discussions

As shown in Fig. 5, the orientation-averaged aspiration efficiencies for both personal 

bioaerosol samplers were relatively higher at the smallest aerosol size range and decreased 

gradually as the aerosol size increased. This trend agrees with the ACGIH inhalable 

convention, however the data values for the test samplers seem slightly lower than the 

convention. Within the size range of the test particles, the aspiration efficiency of the BC 

was on an average 0.1 (S.D. = 0.09) lower than the inhalable convention, and the aspiration 

efficiency of PAS-5 was on an average 0.23 (S.D. = 0.08) lower than the convention. In 

contrast, the reference sampler (IOM) agreed quite well with the inhalable convention both 

qualitatively and quantitatively with only 0.05 lower than the convention in average. When 

comparing the datasets of different wind speeds in Fig. 5, it can be found that the aspiration 

efficiencies are not a function of wind speed. Given the same particle size, for both test 

samplers, the aspiration efficiencies at three wind speeds are not significantly different at the 

α = 0.05 level based on the ANOVA test. Therefore, it can be stated that within the aerosol 

size ranging from 0.5 to 10 μm, the performance of the BC and PAS-5 personal bioaerosol 

samplers in terms of the aspiration efficiency closely meets the criterion for inhalable 

aerosol samplers. Fig. 5 shows that the aspiration efficiencies of the BC sampler were 

generally higher than those of the PAS-5 sampler. The cause for this is not immediately 

clear, but it may be due to the difference in the sampler body dimensions. The size and 

shape of the BC and PAS-5 samplers may cause the flow fields around the two samplers to 

differ, which may prevent the test aerosols from being drawn into the sampler inlet and thus 

results in the discrepancy in the aspiration efficiency.
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Fig. 6a and b show that the aspiration efficiencies of both BC and PAS-5 samplers in 

different sampling orientations were comparable. No specific sampling orientation was 

shown to give significantly higher aspiration efficiency. This result implies that the sampling 

orientation has a very limited effect on the aspiration efficiencies of these two personal 

bioaerosol samplers. Therefore, it is fair to say that the aspiration efficiencies of the BC and 

PAS-5 samplers are independent of the sampling orientation within the range of aerosol 

sizes and wind speeds employed in this evaluation. In contrast, the trend of the aspiration 

efficiency of the IOM reference sampler (Fig. 6c) seems to be a function of the sampling 

orientation. The discrepancy between different sampling orientations is especially obvious at 

medium-to-high wind speeds (1.0 and 2.0 m s−1) with large test aerosols (10 μm). The IOM 

sampler had a relatively lower aspiration efficiency in the 90° sampling orientation than the 

other two sampling orientations (0° and 180°). This result is similar to those reported by Li 

et al. using an IOM personal sampler and by Aizenberg et al. using a Button personal 

sampler.26,27 In those studies, it was reported that the aspiration efficiency of an IOM or a 

Button sampler is a function of its sampling orientation with the 90° sampling orientation 

having a lower aspiration efficiency than both the 0° and 180° sampling orientations. The 

fact that the sampling orientation of the current test samplers had little impact on the 

aspiration efficiency might be due to the possibility that a convergent air flow was generated 

around the inlets of these two samplers in the wind tunnel. Because the inlet diameters of the 

BC (0.24 cm) and PAS-5 (0.75 cm) samplers are significantly smaller than that of the IOM 

sampler (1.5 cm), and the flow rate used to operate the BC and PAS-5 samplers (4 and 10 l 

min−1, respectively) are higher than that of the IOM sampler (2 l min−1), stronger sampling 

flow fields with much higher sampling velocities (14.7 and 3.8 m s−1 for the BC and PAS-5 

samplers, respectively, at the inlet plane) are generated by the two test samplers than that 

generated by the IOM sampler (0.2 m s−1). As a result, a powerful convergent flow field is 

formed around the sampler inlets of the two test samplers at all three wind speeds used in 

this evaluation (0.5, 1.0 to 2.0 m s−1). The strong air movement can therefore draw more 

aerosols having considerable inertia (such as the 10 μm particles used in this evaluation) 

from the vicinity of the sampler inlet to move toward into the sampler inlet regardless of the 

sampling orientation. Conversely, the relatively weak sampling movement of the IOM 

sampler generated a divergent flow field around the sampler inlet at the wind speeds used in 

this evaluation. As a consequence, while sampling aerosols with considerable inertia, it may 

produce oversampling when sampling into the wind (0°) and undersampling when sampling 

perpendicular to the wind (90°). Although the above explanation can reasonably explain the 

results obtained in this evaluation, it is believed that if the test wind speed increases 

sufficiently, making the flow fields around the test samplers change from convergent to 

divergent, the aspiration efficiencies of the BC and PAS-5 samplers will be influenced by 

their sampling orientations. However, in such sampling conditions, the associated wind 

speeds may already be outside the range of wind speeds commonly found in the general 

workplace.

Fig. 7 shows the fractions of capture efficiency, wall deposition, and filter collection for the 

two test samplers as a function of dae at different wind speeds. As previously noted, the 

capture efficiency is defined as the fraction of bioaerosols that entered the sampler and then 

were captured by the collection medium. For the BC sampler, the capture efficiency is the 

Su et al. Page 8

J Environ Monit. Author manuscript; available in PMC 2015 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fraction of bioaerosols deposited on the tube wall as well as the liquid added. For PAS-5, the 

capture efficiency is the fraction of bioaerosols captured by the recirculating liquid (the 

recirculating liquid is the only collection medium for PAS-5). Having a high capture 

efficiency indicates that the bioaerosol concentration obtained by a sampler more accurately 

represents the true bioaerosol concentration in the sampling environment. As can be seen in 

Fig. 7, the capture efficiency of the BC sampler (as represented by the fraction L + W) 

shows similar trends at the different wind speeds. The same phenomenon was also found in 

the PAS-5 sampler (the capture efficiency of PAS-5 is presented by the fraction L only). 

These results imply that the capture efficiencies of the test personal bioaerosol samplers 

were not affected by the wind speed. Both samplers had low capture efficiencies when the 

aerosol size was small, and as the aerosol size increased, the capture efficiency increased. 

The capture efficiency of the BC sampler leveled off at 80% for aerosols larger than 5 μm. 

In comparison, the capture efficiency of the PAS-5 sampler averaged about 70% for the 

same aerosol size range. The high capture efficiency obtained from the PAS-5 sampler 

implies that the recirculating liquid film functions well and that it can successfully capture a 

greater percentage of bioaerosols entering the sampler. On the other hand, when taking a 

close look at the capture efficiency of the BC sampler, it was found that a considerable 

portion of the aerosols captured was recovered from the wall of the microcentrifuge tube, 

while the aerosols that were captured by the water in the tube were relatively low.

The fraction of the aerosols that entered the sampler and remained in the sampler 

(represented by L + W, which is the sum of the fractions captured by the liquid and 

deposited on the wall) can be used for estimating the 50% cut-off diameter for the two test 

personal bioaerosol samplers. The 50% cut-off diameter of a sampler indicates that more 

than 50% of the particles larger than this diameter will deposit in the sampler, and most of 

the particles smaller than this diameter will pass through the sampler. Görner et al. used a 

similar means to obtain the cut-off diameter for the CIP 10-M bioaerosol sampler.9 As 

shown in Fig. 7, the L + W fractions of both BC and PAS-5 samplers increased as the 

aerosol size increased. In consequence, the fraction of the aerosols collected by the backup 

filter (represented by F, which are the aerosols that entered the sampler, but later passed 

through the sampler) was higher for the smallest aerosol size and then decreased sharply as 

the aerosol size increased. The trends of the L + W and F shown in Fig. 7 seem unaffected 

by the wind speeds used in the test for both samplers. The L + W fraction of the BC sampler 

increased from an average of 10% at 0.5 μm to about 80% at 10 μm with a corresponding 

50% cut-off diameter at about 1.35 μm. For the PAS-5 sampler, the same fraction also 

increased from an average of 10% at 0.5 μm to about 80% at 10 μm with a corresponding 

50% cut-off diameter at about 1.55 μm. Although the cut-off diameter reported here for the 

PAS-5 sampler is larger than that reported previously where the 50% cut-off diameter was 

around 0.7 μm,13 it is worth noting that the previous tests were conducted in an aerosol 

mixing chamber while the current test was conducted in a wind tunnel.

Based on the experimental data acquired from this evaluation, it can be concluded that, 

overall, the BC and PAS-5 samplers both performed slightly below, but still within, 

acceptable aspiration efficiencies. Although the BC sampler had a relatively higher capture 

efficiency than the PAS-5 sampler, a large portion of the captured bioaerosols was deposited 
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on the wall of its microcentrifuge tube. This result suggests that the application of the BC 

sampler would be limited to specific bioaerosols that can be collected on a dry surface. In 

contrast, most of the test aerosols captured by the PAS-5 sampler were in the collection 

liquid which shows that the PAS-5 sampler has a broader application so that it can be used 

in different work environments for various bioaerosol sampling techniques.

Conclusions

This series of wind tunnel evaluation tests provides a detailed assessment of the working 

function of two newly developed personal bioaerosol samplers (BC and PAS-5) that are 

designed based on the principle of a cyclone. The performance evaluation focused on the 

physical sampling characteristics of the two test samplers in terms of aspiration efficiency 

and capture efficiency. The results showed that the aspiration efficiencies of these two 

samplers closely agreed with the slightly lower ACGIH inhalable convention in the aerosol 

size range from 0.5 to 10 μm. The capture efficiency of the BC sampler reached 80% for 

aerosols larger than 5 μm, and the capture efficiency of the PAS-5 sampler averaged about 

70% within the same aerosol size range. The physical performance of both samplers was 

found to be unaffected by the wind speeds used in the evaluation tests. Overall, the BC 

sampler showed a higher aspiration efficiency and capture efficiency than the PAS-5 

sampler. Nevertheless, it is believed that the PAS-5 sampler may perform better than the BC 

sampler in terms of biological sampling efficiency due to its design to collect the bioaerosols 

onto a recirculating liquid film instead of a dry wall which can greatly maintain the viability 

of the captured bioaerosols. Future studies will concentrate on using model bioaerosols to 

evaluate the biological sampling efficiencies of the two samplers in the same wind tunnel to 

fully evaluate their ability to perform bioaerosol sampling.
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Fig. 1. 
Schematic diagram of the test personal bioaerosol samplers: (a) NIOSH BC and (b) RCT & 

HRB PAS-5.
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Fig. 2. 
The small wind tunnel facility at Lovelace Respiratory Research Institute (showing 

individually labeled components).
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Fig. 3. 
Test aerosol generation system.
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Fig. 4. 
Experimental setup of the test sampler and isokinetic probe in the wind tunnel test chamber.
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Fig. 5. 
The orientation-averaged aspiration efficiency as a function of the aerodynamic diameter for 

the two test personal bioaerosol samplers and the reference sampler, (a) U = 0.5 m s−1, (b) U 

= 1.0 m s−1, and (c) U = 2.0 m s−1 (error bars represent the standard deviation of the 

experiments).
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Fig. 6. 
The aspiration efficiency as a function of the aerodynamic diameter in different sampling 

orientations for the test personal bioaerosol samplers and the reference sampler shown in (a) 

BC, (b) PAS-5, and (c) IOM.
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Fig. 7. 
The capture efficiency, filter collection, and wall deposition of the test samplers at different 

wind speeds: U = 0.5 m s−1, U = 1.0 m s−1, and U = 2.0 m s−1 (L: Liquid; F: Filter; W: Wall; 

L + W: Liquid + Wall; and error bars represent the standard deviation of the experiments.
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